

Roadmaps towards Circularity – Experiences from the Netherlands, the Nordics and Germany

2 February 2022, World Circular Economy Forum (WCEF)

AGENDA

Reinhard von Wittken

Welcome

Susanne Kadner

Introduction Circular Economy Roadmap for Germany

Cathrine **Barth**

Freek van Eijk

Michael **Kuhndt**

Susanne Kadner

Reinhard von Wittken

Summary and Outlook

Panel Discussion

www.circular-economy-initiative.de

Welcome!

From Ambition to Action!

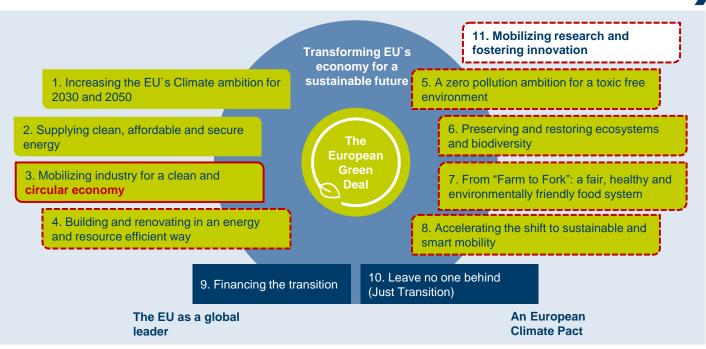
Roadmaps towards Circularity - Experiences from the Netherlands, the Nordics and Germany

Feb. 2nd, 2022

Cathrine Barth Managing Partner -Nordic Circular Hotspot

Freek van Eijk Director -Holland Circular Hotspot

Michael Kuhndt Executive Director -Collaborating Centre on Sustainable Consumption and Production (CSCP)



Dr. Susanne Kadner Head of Circular Economy Initiative Deutschland acatech

In the European Green Deal, the Circular Economy plays a central role in achieving the goal of greenhouse gas neutrality by 2050

Overview of the European Green Deal (EGD)

Remarks

- "The old growth model based on fossil fuels and pollution has outlived its purpose. What is needed now is a strategy for growth that gives back more than it takes. The European Green Deal is our new growth strategy" - Ursula von der Leven (EU Commission President)
- The circular economy plays a central role in achieving the goal of greenhouse gas neutrality by 2050

Source EGD: European Commission

CE in focus CE as enabler

Overview CEID: 3 ministries, 24 companies, 24 scientific institutions and other relevant organizations from civil society

Politics

Federal Ministry of Education and Research

Federal Ministry for the **Environment, Nature Conservation** and Nuclear Safety

Federal Ministry for Economic Affairs and Energy

Office

Business

ALPLA

Stiftung

GRS Batterien

Zürid

UNIVERSITÄT BON

TU Clausthal

UNIVERSITÄT

HELMHOLTZ-INSTITUT FREIBERG

UB RESSOURCENTECHNOLOGIE **TECHNISCHE**

DRESDEN

FH | JOANNEUM

Civil society and other institutions

RLG

Energy Systems of the Future

The CEID is well equipped to drive the transformation towards a Circular Economy in Germany and beyond

Over 50 members:

3 ministries, 20+ companies, 20+ scientific institutions and other relevant organizations from civil society to make the transition to a Circular Economy happen: **Collaboration along the value chain including all relevant stakeholders**

3 content deep dives:

Research questions of high political relevance

- **I. Circular Business Models:** the role of digital technologies and regulatory frameworks as enablers for sustainability
- II. Traction Batteries: resource productive scale-up of battery systems for electric mobility
- **III. Packaging:** future-proof solutions for a circular plastic packaging industry

4 publications:

Insights are synthesized into actionable measures to support the transition to a Circular Economy:

- collaboratively: establishing value creation networks
- concrete: case studies provide relevant insights about incentives and barriers
- innovative: science-based recommendations on research gaps to support the transition

Topics of the Circular Economy Initiative: Combination of overarching topics with industry deep dives

II. Working Group **Traction**

Batteries

Coordination:

Prof. Dr.-Ing. Arno Kwade/ TU Braunschweig and Dr.-Ing. Christian Hagelüken/ Umicore

■ Vision 2030

Pilot profiles of projects:

- Knowledge of battery life
- Model-based decision platform for EoL use
- Battery disassembly network

I. Working Group Circular Business Models Coordination: Prof. Dr. Erik Hansen/ Head of the Institute for Integrated Quality Design (IQD) at Johannes Kepler University (JKU) Linz and Patrick Wiedemann/ Reverse Logistics Group Business model typology – digital technologies – regulatory framework conditions Circular Economy Roadmap for Germany Policy recommendations on technology development and regulatory framework Macroeconomic analysis of contribution to reduced material input and GHG emissions Vision 2030/2050

III. Working Group Packaging

Coordination:

Prof. Dr. Peter Elsner/ Fraunhofer ICT and Prof. Dr. Thomas Müller-Kirschbaum/Henkel

■ Vision 2030

Use cases:

- Non-Food –HDPE bottle
- Food PET tray

Circular Economy Roadmap for Germany

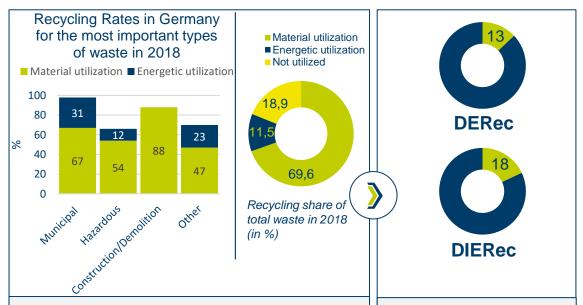
Insights from acatech's Circular Economy Initiative Deutschland

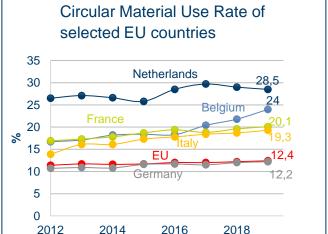
Dr. Susanne Kadner

Head of Circular Economy Initiative Deutschland Co-Lead Energy, Resources and Sustainability

2 February 2022, World Circular Economy Forum (WCEF)

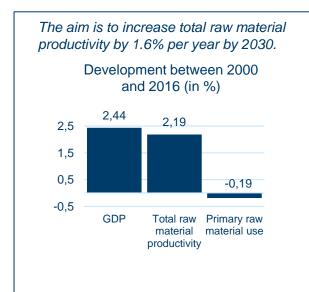
www.circular-economy-initiative.de



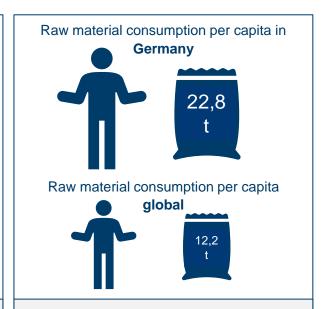


The transformation from circular waste management to a circular economy is still pending in Germany

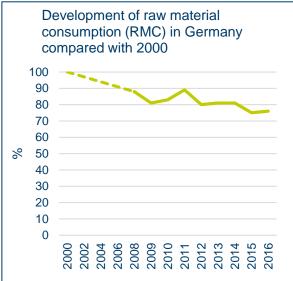
Overall **high recycling rates**, but (still) based on input quantities; output quality is not taken into account. The total volume of waste reached a new high in 2018.


Resource savings through the use of secondary raw materials are around 13% (DERec) and 18% (DIERec, including global upstream chains).

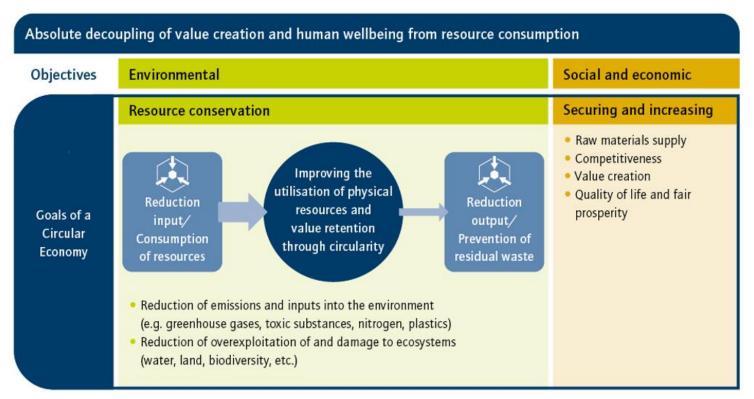
In an EU comparison, Germany is still below the average value of all EU countries despite a moderate increase in the circular material use rate.


Sources: Statistisches Bundesamt 2020, UBA 2020a, Steger et al. 2019, Eurostat 2020

In Germany, resource consumption has yet not decoupled from economic growth

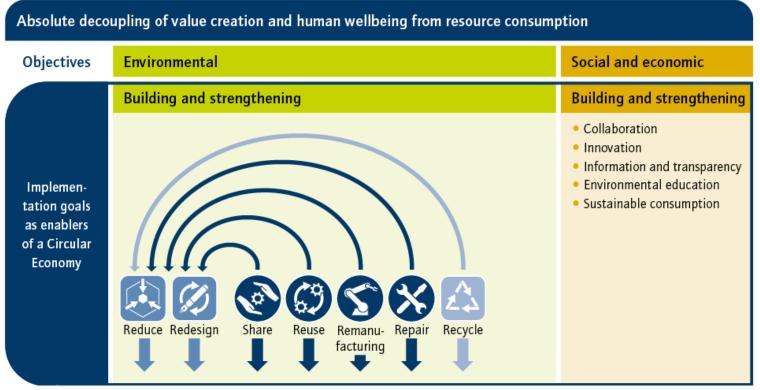


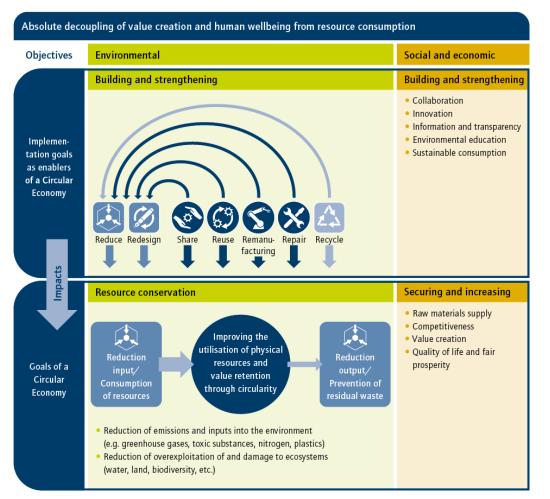
From 2000 to 2016, growth averaged **2.2%**. The **increase was almost exclusively due to GDP growth**.


Raw material consumption in Germany is still almost **twice the global average**.

Since 2009, **no clear development trend** can be discerned.

A Circular Economy is not an end in itself - but what goals should it contribute to?

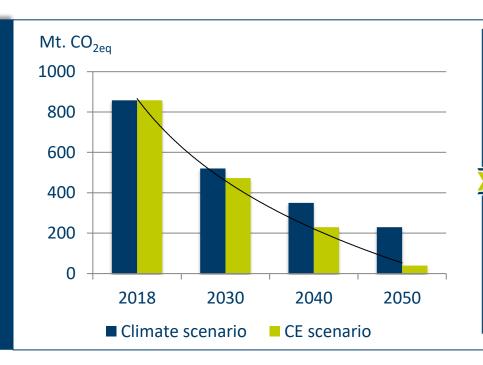



Source: Framework based on Koch/Coelho Megale 2020

A Circular Economy is not an end in itself - but what goals should it contribute to?

Source: Framework based on Koch/Coelho Megale 2020

Source: Framework


Megale 2020

based on Koch/Coelho

Reducing greenhouse gas emissions: Circular economy levers could help close the gap to achieving greenhouse gas neutrality

Development of greenhouse gas emissions in the circular economy scenario (CE) compared with the climate scenario (business-asusual, BAU)

Circular Economy levers:

- Life cycle extension
- Product use intensification
 - Increased recycling (incl. increased energy efficiency)

Reducing resource consumption: Circular economy measures could enable resource savings of 68 percent in 2050

Resource
consumption in
Germany in the
Circular Economy
(CE) scenario
compared to the
climate scenario
(Business-asUsual, BAU)

The Circular Economy Roadmap synthesizes the findings and recommendations of the three Working Groups

Social perspective

Sociotechnical perspective

Business model perspective

Product perspective

- Social and cultural change (e.g. repair culture)
- Political framework conditions
- Technical development
- Value networks
- Circular business models
- Relationships with customers/partners
- Internal awareness of CE
- Hardware
- Software

Perspectives of the Business Models working group

- Implement design for circularity to put different R-strategies into practice
- Use **digital technologies** for effective practical implementation of design for circularity

Product

- Sociotechnical
 - Set economic incentives (overhaul of tax regulations, carbon pricing, phase-out of harmful subsidies)
 - Introduce mandatory standards and strengthen extended producer responsibility
 - Increase demand through public procurement
 - Accelerate material, process, digital and business model innovations with environmental benefit
 - Support the development of quality standards

Overview of potential solutions from the Business Models working group

See the working group's findings report for complete contents

- Support changes in stakeholder positioning (in particular vertical integration and networking)
- Accelerate embedding of stakeholders in value networks/cycles
- Combine different Circular Economy strategies and service levels
- Exploit the potential of digital technologies and create innovation spaces

Business model

Society

- Establish new formats for participation and promote individual initiatives and social innovation
- Ensure transparency by product labelling and declarations
- Create education and training programmes as a basis for circular awareness.
- Establish an institution to consolidate scientific insights, industrial practice and societal needs

Perspectives of the Business Models working group

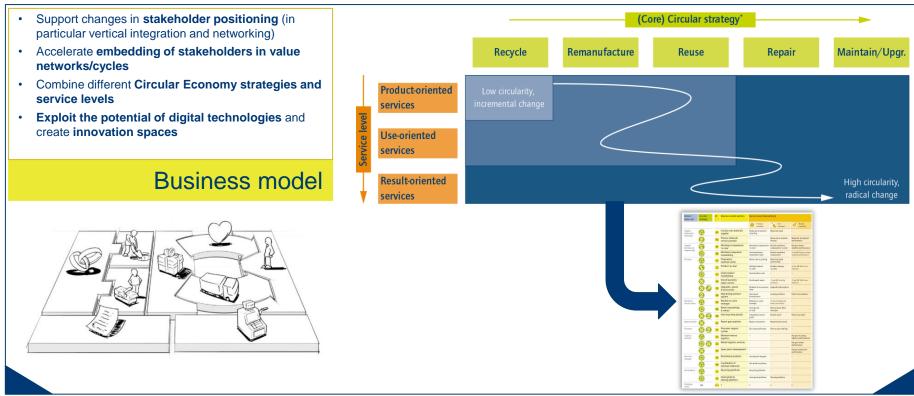


Figure.: Ecosystem Perspective on CBM and example, Source: own presentation, based on Konietzko et al. 2020b | Image: Pixabay

Perspectives of the Packaging working group

- Implement design for circularity for efficient and effective resource management
- Create a uniform basis for evaluating the sustainability of packaging alternatives
- Invest in sorting and recycling technology and its further development

Product

Sociotechnical

- Set economic incentives
- Pick up the pace of **packaging material harmonisation**
- Offer support and incentives for consumers
- Offer specialised education and training (e.g. for industrial designers)

Overview of potential solutions proposed by the **Packaging** working group See the working group's findings report for complete

- Promote the development and implementation of circular business models and networks
- Exploit the potential of mechanical recycling
- Fund research into potential further components of a Circular Economy for packaging (e.g. chemical recycling processes)

Business model

Society

- Provide education as the basis for overarching cooperation with a changed value creation philosophy
- Increase user understanding

Perspectives of the Packaging working group

- Implement design for circularity for efficient and effective resource management
- Create a uniform basis for evaluating the sustainability of packaging alternatives
- Invest in sorting and recycling technology and its further development

Product

Packaging requirements

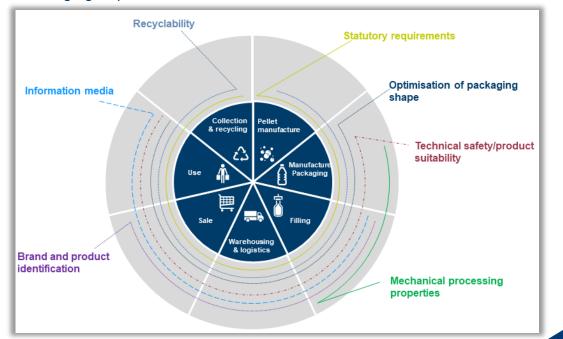


Image: Anna Shvets von Pexels.com

Perspectives of the Traction Batteries working group

- Implement design for circularity to optimise life cycles and take account of the energy balance
- Ensure better data availability for battery passport, digital twin, etc.
- Enable EU-wide circular battery management (incl. European Data Spaces)

Product

Sociotechnical

- Set economic incentives
- Establish key **definitions**, (minimum) standards, recovery rates and obligations
- Create transparency about ecosocial aspects and product and process quality
- Initiate the development of standards, Circular Economy metrics and modelling and process innovation
- Develop European disassembly network

Overview of potential solutions proposed by the Traction Batteries working group

See the working group's findings report for complete contents

- Promote high-quality circular business models for B2B and B2C
- Promote collaborative exchange of relevant data for implementing R strategies
- Expand disassembly & recycling capacity
- Enable grid integration during (V2G) and after (second life) the first life cycle

Business model

Society

- Establish practical training in circular business models
- Expand basic and applied knowledge in education and academic training
- Strengthen transdisciplinary basic research
- Establish industry-wide agreements on the rollout and use of relevant Circular Economy metrics

Perspectives of the Traction Batteries working group

Sociotechnical

- Set economic incentives
- Establish key definitions, (minimum) standards, recovery rates and obligations
- Create transparency about ecosocial aspects and product and process quality
- Initiate the development of standards, Circular Economy metrics and modelling and process innovation
- Develop European disassembly network

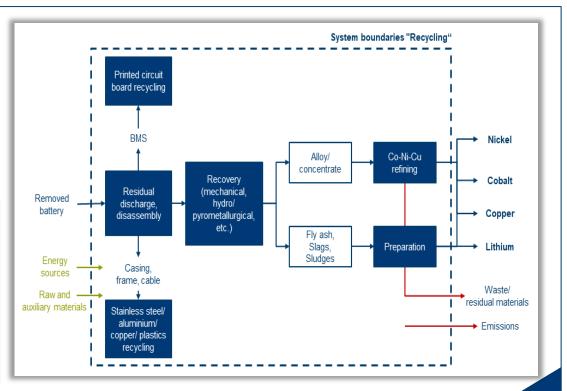


Image: Wikimedia.org | snappygoat.com

Circular business models

- Creation of innovation spaces, within and across companies (value networks)
- Data-driven use- and results-oriented service business models
- Circular redesign of products as a business model component

Standardisation

- Classification of used and remanufactured products
- Development of quality standards for remanufactured products
- Specifications for recycled material content and quality
- KPIs
- CE-metrics

Transparency

- Make CE-relevant information (e.g. product passport) commercially available
- Exchange of relevant data and information between (new) actors
- Encourage purchasing decisions in favour of sustainable products and business models via meaningful labelling for consumer

Regulatory Instruments

- Unified regulatory framework with CE focus
- Coherent product policy at national and EU level (e.g. Design for CE; Digital Product ID)
- Qualitative recycling rates

Economic incentives

- Direct financial assistance for pilot projects and research with clear environmental benefits
- Promotion of novel business models
- Overhaul of tax rules(Ex'tax):
 - Levying higher duties on resources and emissions
 - Reduce tax burdens for businesses in relation to the factor "labor" (e.g. personnel, services)

Infrastructure for reuse, continued use and recycling

- Expansion and development of infrastructure for reuse, continued use and recycling
- Dissemination of digital technologies for material identification and sorting

Technical development and research

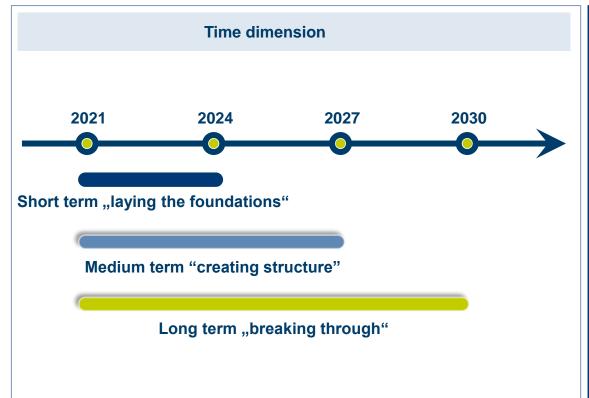
- Development of relevant material, product and process innovations with an environmental benefit
- Methods & tools for CE implementation, including:
 - Development of metrics
 - Model-based decision-making platforms
 - Digital twins
- Research funding

Public procurement

 Setting strategic objectives and binding targets for used, remanufactured and recycled products using a practical, science-based decision-making aid

Institutional embedding

- Provide a central institutional body with the aim of ensuring Germany's transformation to a Circular Economy
 - Knowledge sharing
 - Create new connections between actors
 - Embedding the CE more widely and set it in a European context



Education and knowledge transfer

- Provide CE-relevant education and training, including:
 - Including CE in curricula
 - New courses of study and vocational training
 - Transformative learning
 - Real-world laboratories
- Knowledge transfer to society/population and the world

Concrete recommendations for action for politics, business and science were elaborated into a roadmap with time horizons

- · Circular business models
- Standardisation
- Transparency
- Regulatory instruments
- Economic incentives
- Infrastructure for reuse, continued use and recycling
- Technical development and research
- Public procurement
- Institutionalisation Education and knowledge transfer

